
Ruby on HPC

What is Ruby?

Ruby is a high-level, interpreted, object-oriented programming language. It was

designed and developed in the mid-1990s by Yukihiro "Matz" Matsumoto in Japan.

Ruby is known for its simplicity and readability, making it a popular choice for beginner

programmers. However, it also provides many advanced features for experienced

developers, including metaprogramming, dynamic typing, and garbage collection.

Ruby has a strong emphasis on code readability and high-level abstractions, which

makes it well-suited for building web applications, especially using the Ruby on Rails

framework. Ruby on Rails is a full-stack framework for building web applications that

provides a high level of abstraction and a "convention over configuration" philosophy,

making it easier to build and maintain complex web applications.

In recent years, Ruby has become increasingly popular, especially in the start-up and

tech communities, and has been used to build many successful web applications, such

as GitHub, Shopify, and Airbnb.

Links:

Official Website

Tutorial

Versions Available:

The following versions are available on the cluster:

• ruby 2.1.2

https://www.ruby-lang.org/en/documentation/
https://en.wikibooks.org/wiki/Ruby_Programming

How to load Ruby?

To load Ruby, use the following commands:

#Load the Ruby module
module load ruby/2.1.2

To verify if the module is loaded correctly, use the following command,

List all the module loaded in the environment
module list

In a fresh environment, this only loads Ruby module without any dependencies.

How to use Ruby?

Ruby can be used effectively for scientific computations, especially for prototyping and

data analysis.

Here are some tips for using Ruby in HPC for scientific computations:

1. Use optimized libraries: There are several optimized libraries available for Ruby

that can be used for scientific computations. For example, Numo::NArray is a fast

numerical array library for Ruby that provides optimized numerical computation

capabilities.

2. Parallelize your code: Ruby provides several libraries and tools for parallelizing

your code, such as Parallel and concurrent-ruby. These libraries can be used to

distribute your computations across multiple CPU cores or computers, making

your code run faster.

3. Optimize your code: Optimize your code for performance by profiling it and

eliminating bottlenecks. You can use the built-in Ruby profiler to determine

which parts of your code are slow, and then optimize those parts.

4. Use a multi-language approach: If necessary, you can use Ruby to prototype your

scientific computations, and then translate your code into a lower-level language,

such as C or Fortran, for performance-critical parts of your code. This can give

you the best of both worlds: the ease of development in Ruby, combined with the

performance of a lower-level language.

To demonstrate the usage of the ruby library, here is a sample parallel matrix

multiplication,

require 'parallel'

An array of matrices
matrices = [
 [[1, 2], [3, 4]],
 [[5, 6], [7, 8]],
 [[9, 10], [11, 12]]
]

The size of the matrices
size = matrices.first.size

The product of the matrices
product = Array.new(size) { Array.new(size, 0) }

Use parallel processing to calculate the product of the matrices
Parallel.each(0...size, in_threads: size) do |i|
 (0...size).each do |j|
 (0...size).each do |k|
 product[i][j] += matrices[i][k] * matrices[k][j]
 end
 end
end

puts "The product of the matrices is: #{product}"

To install parallel library, use gem package manager,

gem install parallel

Here is a slurm script to submit the job,

#!/bin/bash
Request 1 node and 2 tasks
#SBATCH --nodes=1
#SBATCH --ntasks=2
#SBATCH --p main
#SBATCH --qos main
Request 2 CPUs per task
#SBATCH --cpus-per-task=2
Request 2GB of memory per task
#SBATCH --mem-per-task=2GB
Set the job name
#SBATCH --job-name=parallel_ruby
Set the output file
#SBATCH --output=parallel_ruby.out

Load the Ruby module
module load ruby/2.1.2

Run the parallel Ruby script
ruby parallel_script.rb

Where to find help?

If you are confused or need help at any point, please contact OIT at the following address.

https://ua-app01.ua.edu/researchComputingPortal/public/oitHelp

https://ua-app01.ua.edu/researchComputingPortal/public/oitHelp

